
A model for competition between 'classical' and 'quantum' percolation effects in disordered

electronic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 L345

(http://iopscience.iop.org/0305-4470/22/8/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) L345-L351. Printed in the UK 

LETI’ER TO THE EDITOR 

A model for competition between ‘classical’ and ‘quantum’ 
percolation effects in disordered electronic systems? 

J PimentelS and S L A de Queiroz 
Departamento de Fisica, Pontificia Universidade Cat6lica do Rio de Janeiro, CP 38071, 
22453 Rio de Janeiro RJ, Brazil 

Received 21 November 1988 

Abstract. A simple model of a diluted lattice is proposed to discuss the interplay between 
classical percolation and quantum localisation effects on electronic transport properties in 
disordered media. ‘Absent’ sites act as infinite barriers, while interference effects at 
‘occupied’ sites are assumed to be negligible at random with probability a. The limits 
a = 0 and a = 1 are respectively ‘quantum’ and ‘classical’ percolation. The phase diagrams 
of conducting and insulating phases are discussed through a small-cell position-space 
renormalisation group in space dimensionalities d = 2 and 3; in d = 2 there is crossover 
from ‘classical’ to ‘quantum’ percolation, while in d = 3 the phase structure exhibits a 
multicritical point and a ‘classically insulating’ phase which are not present in d = 2. 

It is well known that a simple (classical) percolation model cannot account for all the 
complex features of the transition between localised and extended one-electron 
wavefunctions in disordered materials. Such a transition is believed to be properly 
described by the Anderson model or its variants (Anderson 1958, see also Kirkpatrick 
and Eggarter 1972, Abrahams et al 1979, Anderson et a1 1980, Lee and Ramakrishnan 
1985). The Anderson model as originally proposed displays a wealth of interesting 
physical aspects; however, its treatment on a first-principles basis is so involved that 
often adaptations are made, which are thought to include some essential physical 
features of the model, yet render it more tractable in practice. One such scheme is 
quantum percolation (Kirkpatrick and Eggarter (1972); for a recent review see e.g. 
Odagaki (1986) and references therein). For a tight-binding Hamiltonian 

while in the usual Anderson model the site self-energies are continuously distributed, 
(e.g. according to a flat distribution of width W) for the (site) quantum percolation 
problem one assumes the bimodal distribution 

P (  E { )  = xS( E i )  + (1 - x)S( Ei -00) (2) 
i.e., a fraction 1 - x  of the sites is forbidden (analogously to empty sites in classical 
percolation). For bond quantum percolation, the nearest-neighbour hopping parameter 
V j  is zero with probability 1 - p ,  and V f 0 with probability p .  Here, we shall be 
concerned only with the site problem. 
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Quantum percolation differs fundamentally from the standard Anderson problem 
in that all moments (of order greater than zero) of the distribution diverge (for the 
bond problem, which corresponds to off -diagonal disorder, the relevant distribution 
is that of log V (Odagaki 1980, Soukoulis and Economou 1981, Puri and Odagaki 
1981)). In such a case, usual arguments regarding the Anderson problem would lead 
one to conclude that all states are localised, for any space dimension d and any degree 
of disorder (x or p # 1). Instead, at least in d = 3 evidence shows that there is a finite 
quantum percolation threshold x, (or p , )  < 1 at which the localisation transition takes 
place (Chang and Odagaki 1987a and references therein). In d = 2  it seems that all 
states are localised for any disorder, as obtained for the Anderson problem from the 
scaling approach of Abrahams et a1 (1979); direct evidence for this, however, is not 
conclusive. For example, Chang and Odagaki (1987a) obtain xq > 0.94 in d = 2 from 
a large-cell Monte Carlo renormalisation group; large fluctuations prevent those authors 
from making a more precise statement. The existence of these fluctuations is consistent 
with the idea that d = 2 is a marginal dimension in this case, as for the Anderson 
problem (Abrahams et a1 1979). See also Raghavan (1984) for similar results, and 
Chaturvedi and Srivastava (1983) for arguments in favour of x, < 1 in d = 2. 

An attempt to make the rules of quantum percolation more flexible, in order to 
encompass a wider range of possible physical situations, was made by Chang and 
Odagaki (1987b) by incorporating tunnelling effects through finite barriers. They only 
consider d = 3  and find, for the site problem, an extrapolated ~ ~ 2 0 . 2 6  for infinite 
barrier height, smaller than the classical percolation threshold x, = 0.31 18 (Stauffer 
1985). In an altogether different direction, the work of Shapiro (1982) discusses the 
interplay between quantum localisation and classical percolation through the introduc- 
tion of a diluted lattice of random quantum scatterers. He finds no localisation 
transition in d = 2, and in d = 3 a transition with the same exponents of the usual 
Anderson problem. Although this model is not equivalent to quantum percolation, 
the resistance p assigned to each scatterer (which may be present or absent with 
respective probability p or 1 - p ,  absent sites corresponding to total reflection of the 
incident wave) to some extent measures the strength of (quantum) interference effects. 
For p = 0 the problem is identical to classical percolation; at p = 1 and p # 0 one 
expects to have the usual Anderson problem. While the parameter p is supposed to 
represent the existence of microscopic disorder, it does so in an average way: each 
random scatterer is in fact a ‘supersite’, approximating a region with linear size at least 
equal to the electron’s phase coherence length (this is essential for the random scattering 
assumption), which may contain many actual atoms. It is thus interesting to check 
whether results similar to Shapiro’s will emerge when microscopic disorder (i.e. interfer- 
ence effects) is dealt with from a viewpoint similar to that used in quantum percolation, 
where no random-phase assumptions are made about nearest-neighbour hopping. 

In order to do this, we propose a simple model of a diluted lattice, where empty 
sites act as infinite barriers, such as in quantum percolation or Shapiro’s model, but 
occupied sites may exhibit either classical behaviour (i.e. transmission coefficient = 1 
for any incoming particle) with probability a, or quantum behaviour (an incoming 
particle may be reflected or transmitted, according to the laws of wave mechanics) 
with probability 1-a .  To make contact with the ‘binary alloy’ interpretation of 
Kirkpatrick and Eggarter (1972), we keep the forbidden sites (type B )  with infinite 
energy, and now allow the self-energies of allowed sites (type A )  to vary, and approxi- 
mate the distribution of type-A site energies by a binary form: ‘low’ barriers, with zero 
reflectance, and ‘high’ ones (or height comparable to the electron’s energy), at which 
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the reflection probability is not negligible. For a fixed distribution of site self-energies, 
one can think of a as related to the diffusing electron’s energy: highly energetic 
electrons are unlikely to be reflected from allowed sites by any but the highest finite 
barriers, so in this case a is close to 1; the propagation of low-energy electrons is 
simulated by a small value of a. Thus the model incorporates, albeit crudely, an energy 
scale, making room for the definition, for example, of a mobility edge; in standard 
quantum percolation, such a scale does not exist, since the only barriers are infinite 
(empty sites). The p = 0 limit of Shapiro’s model corresponds to a = 1 here (classical 
percolation); however, while the present model changes over to quantum percolation 
as a + 0, that author obtains, at p = 1 and p f 0, the standard Anderson problem 
formulated in terms of random scatterers. Although the two models are therefore not 
strictly equivalent, both incorporate an interplay between ‘classical’ and ‘quantum’ 
disorder. 

The aim of this letter is to study the effects of space dimensionality on the phase 
diagram of insulating and metallic regions for the mixed classical-quantum percolation 
model proposed above. For this, we have used a small-cell position-space renormalisa- 
tion group (PSRG) already developed separately for each extreme: classical (Reynolds 
et a1 1977, 1980) and quantum (Odagaki and Chang 1984), with suitable adaptations 
for intermediate situations. As seen below, there is in this case a marked difference 
between d = 2 and 3 (the only dimensions considered here) which parallels that found 
for the Anderson problem, but is not identical to it; overall, our study is complementary 
to others in this field, in that it shows that no matter how one chooses to incorporate 
disorder effects in electronic transport problems, qualitative differences arise between 
two- and three-dimensional systems. 

Classical percolation effects are defined by a geometric rule (namely, a particle can 
jump, with probability 1, only between two adjacent occupied sites), while the quantum 
percolation aspects are obtained through the analysis of Hamiltonians like equation 
(1) above. In PSRG, one can take both into account as follows: 

(i) For the renormalised site occupation probability x’, specify all configurations 
in the original cell in which one can ‘get across’ the cell through a path of occupied 
sites (percolating configurations). 

(ii) In addition to its intrinsic probability x”(1 - x ) ~ - ~  for a configuration with n 
( N  - n) present (absent) sites, each percolating configuration has a weight related to 
the probability that a particle will diffuse through it: this is 1 in the classical problem, 
and, for purely quantum percolation (following Odagaki and Chang 1984) 

Wconfxlim C I(PI exP(-iHi,onft)Ia)I* (3) 
f-P* a p  

where a are sites on one edge of the cell, /3 are those on the opposite edge (already 
in the next cell; see figure l (b )  of Odagaki and Chang (1984)), and Hconf is the 
Hamiltonian of the particular configuration (with hopping allowed only between 
nearest-neighbour present sites). Note that Wconf< 1, since it is normalised by the 
weight of the configuration with all sites present, through which one assumes that an 
electron will certainly percolate, in analogy with Bloch waves in the infinite pure crystal 
(Odagaki and Chang 1984). 

In our case, where configurations with both ‘classical’ and ‘quantum’ sites are 
allowed: 

(a) we have given weight 1 to percolating configurations in which it is possible to 
cross the cell stepping only on ‘classical’ sites; 
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(b) configurations whose crossing is necessarily made through at least one ‘quan- 
tum’ site are given the same weight as if all present sites in that configuration were 
‘quantum’ (thus Wconf would be calculated by equation (3)). Although these criteria 
incorporate a certain degree of arbitrariness, rule (a) reflects the physically relevant 
fact that, if a particle can choose between propagating freely or subject to reflections, 
it will follow the easiest path; rule (b) is based on the idea that a chain is as weak as 
its weakest link. It is expected that all reasonable rules will give the same qualitative 
results; we have confirmed this through slight variations of the above-mentioned criteria. 

We have obtained a set of two combined recursion relations for x f  (probability of 
a renormalised site being occupied) and x’a (probability of an occupied renormalised 
site being of ‘classical’ character). We consider only configurations where the cell can 
be crossed along a given direction, say horizontally (this is rule RI of Reynolds et a1 
(1977)). Configurations that contribute for a’ are those which conform to rule (a) 
above. For examples, see figure 1. We also tried writing an equation for x‘(1 -a’), 
taking into account configurations which obey rule (b), having obtained the same 
qualitative results. For a two-dimensional square lattice, with rescaling parameter 
b = 2, we have: 

x’= x4+ x3( 1 - x)[4a3 + 10.5624a2( 1 - a)  $9.84364 1 - ( ~ ) ~ + 3 . 2 8 1 2 (  1 - a ) 3 ]  

+x2(1 -x)‘[2a2+2.625a(l- a)+ 1.3125(1- (4a) 

x f a f  = x4[a4+4a3(1 - a ) + 2 a 2 ( 1  - 

+ x3( 1 - x)[4a3 + 4a2( 1 - 41 + 2 x 7  1 - 

Note that, for (Y = 1 both equations degenerate into the recursion relation given in 
table 2 of Reynolds et a1 (1980) for the corresponding classical percolation problem; 
for a = 0, equation (4a)  reproduces that given by Odagaki and Chang (1984) for 
quantum percolation. As both a = 0 and a = 1 are fixed points of 4( b), the purely 
classical and purely quantum problems are transformed each into itself, as they should 
be. The equations for the simple cubic lattice, also with b = 2, behave similarly at the 
limits a = 0 and a = 1. However, the phase diagrams which emerge from the iteration 
of the recursion relations are very different from each other, as seen in figure 2. 

In d = 2 there are only three attractors (fully stable fixed points), namely (x, a )  = 
(1, l ) ,  (1,O) and (0, 0); their domains of attraction are respectively termed ‘classical 
conducting’ (cc), ‘quantum conducting’ (QC) and ‘quantum insulating’ ( Q I )  phases. 
In addition to these, in d = 3 there is a fourth attractor at (0, l ) ,  whose domain of 
attraction is the ‘classical insulating’ (CI)  phase (not present in d = 2). Physically, a 

(01 lb) I C )  Id1 

Figure 1. Examples of configurations in d = 2 indicating empty sites (0), occupied ‘classical’ 
sites (O) ,  and occupied ‘quantum’ sites (0). ( a )  does not percolate (cell cannot be crossed 
from left to right). ( b )  counts as a renormalised ‘classical’ site; weight 1; intrinsic probability 
x4a2(l  -a)’. ( c )  counts as a renormalised ‘quantum’ site; weight 0.8750; intrinsic probabil- 
ity x3(l  -x)cy’(l  -a). ( d )  counts as a renormalised ‘quantum’ site; weight 1 (because all 
sites are occupied; see text); intrinsic probability x 4 a (  1 - a)3 .  
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Figure 2. Phase diagrams in d = 2 and d = 3 obtained from the recursion relations (x, a) -* 
(x’, a‘), indicating flow directions along the phase boundaries, fully stable fixed points 
(attractors) (O),  semi-stable fixed points (U), fully unstable fixed points (0) and domains 
of the quantum insulator (QI),  classical insulator (CI) ,  quantum conductor (QC) and 
classical conductor ( C C )  (see text). 

system represented by a point in the cc phase will conduct mainly through classical 
diffusion mechanisms, whereas in a QC system, quantum intersite hopping is the 
dominant characteristic of conduction. Similarly, QI stands for a system in which it 
is quantum interference which essentially blocks conductivity; for a CI, low geometric 
connectivity is the decisive factor to disrupt macroscopic conduction. 

It is clear that quantum effects are much stronger in d = 2  than in d =3,  as seen 
from the fact that the QI phase extends itself up to a = 1 in d = 2; also, the direction 
of flow lines at the classical percolation point indicates that it is unstable relative to 
quantum perturbations in d = 2 (implying crossover from classical to quantum 
behaviour), and stable in d =3. 

In d = 2 the quantum percolation critical point is at (xq, aq) = (0.867,O) (Odagaki 
and Chang 1984), thus the QC phase occupies a finite fraction of phase space. For 
more realistic calculations (e.g. larger scaling factor b ) ,  this critical point is expected 
to move closer to x = 1, so the QC phase will shrink accordingly. Whether its size will 
go down to zero depends on whether the quantum percolation threshold is exactly 1 
in d = 2  (see e.g. Chaturvedi and Srivastava 1983). On the other hand, we note that 
in this simple version of our model, the cc phase will always be present both in d = 2 
and d = 3. This is because, as there is a finite probability ( a )  for a site to display 
exactly zero interference effects (i.e. to behave classically), for x > xc and a sufficiently 
close to 1 it will always be possible to have an infinite cluster of ‘classical’ sites (which 
will be classically conducting); at x = 1, a just has to exceed the (classical) percolation 
threshold. Thus, the non-trivial fixed points along the ‘classical’ axis a = 1 and along 
the full lattice axis x = 1 are located respectively at (x, a )  = (0.618,l) and (1,0.618) 
for d = 2, and (0.282, 1) and (1,0.282) for d = 3 (compare respectively to X e , d = 2  = 0.593 
(Reynolds e? a1 1980) and Xc,d=3=0.3118 (Heermann and Stauffer 1981)). We are at 
present discussing the effects, on the cc phase, of having a continuous distribution of 
interference strengths (instead of a distribution with a delta function at the ‘classical’, 
zero-interference strength, point). 

The origin of the C I  phase in d = 3 (and its non-existence in d = 2) is related to 
the fixed point at a # 0 , l  on the x = 0 axis. For x + 0, only the lowest powers of x 
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enter the recursion relations, and one obtains: 

a’= + bda ( 1  - a )  + cd  ( 1  - (U)’]]-’ (5 )  
as the recursion relation for a in that limit. The subscripts d stand for space dimension, 
and ( a d ,  bd,  c d )  = (2,2.625,1.3215) in d = 2 and (4,2.9404,1.4702) in d = 3 respectively. 
The fixed points of ( 5 )  are ( 0 , l )  and 

( 6 )  a* = c d (  a d  - b d  f C d ) - ’ .  

For d =2,  a* = 1.91 (unphysical) and for d = 3 ,  a* =0.581, as shown in the d = 3  
phase diagram of figure 2. This difference arises essentially because u2 = 2 and a3 = 4, 
and these in turn are the numbers of distinct straight-line paths accross the cell along 
a given direction for each space dimension. The fact that for low concentrations, 
quantum interference effects must be finite in order to block conduction in d = 3, while 
in d = 2 they always dominate, is then directly related to the simple geometric fact 
that there are more paths between two sites in d = 3 than in d = 2. 

We note that for the three-dimensional problem, the quantum percolation threshold 
is at x,-0.70, the same as estimated by Odagaki and Chang (1984), while there is a 
doubly unstable (multicritical) point (x, a )  = (0.444,0.635). At this point, conduction 
takes place through a mixture of classical diffusion and quantum hopping. Since it is 
expected that xq # 1 in d = 3 (although somewhat smaller than the above estimate; 
Chang and Odagaki (1987a) quote xq = 0.42), the QC phase must be present also in a 
more precise treatment (e.g. larger scaling factor b )  of the present model. The same 
can be said about the CI phase: with the weak assumption that, in d = 3, the normalised 
weight (given by equation (3)) of a one-dimensional path goes to zero faster than b-I, 
it can be shown that the derivative da‘/da of the recursion relation analogous to (6) 
for general b is always zero at a = 0 and less than 1 at a = 1, implying the existence 
of a non-trivial fixed point 0 < a < 1 on the x = 0 axis. Hence, the multicritical point 
and the four-phase structure for the three-dimensional problem are not small-cell 
artifacts. 

In summary, we have proposed a simple model which is able to account for the 
competition between ‘classical’ and ‘quantum’ aspects of disorder. Differently from 
the model proposed by Shapiro (1982), ‘quantum’ disorder is incorporated directly 
from a viewpoint similar to that used in ‘quantum percolation’. We have found essential 
differences between the phase diagrams for the two- and three-dimensional versions 
of the model, once again showing the essential role played by space dimensionality 
(especially as d goes from 2 to 3) in electronic transport problems. Our model has 
the advantage, over, for example, standard ‘quantum percolation’, of being ‘tunable’; 
thus the distribution of interference effects (here approximated by a binary one) can 
be made continuous, and the influence of this over the corresponding phase diagrams 
(particularly over the ‘classical conducting’ phase) can be studied. Work along these 
lines is currently in progress. 
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